
Business Process Task Library
Release 0.1.0

Maykin Media

Aug 02, 2021

CONTENTS

1 Introduction 3

2 Usage 5
2.1 Usage . 5
2.2 Deployment . 5
2.3 Third party documentation . 7
2.4 Camunda support . 11
2.5 Public API . 11

3 Developers 27
3.1 Architecture . 27
3.2 Work units . 29
3.3 General information . 33
3.4 Coding style . 34
3.5 Testing . 46

4 Indices and tables 49

Python Module Index 51

Index 53

i

ii

Business Process Task Library, Release 0.1.0

Version 0.1.0

Source https://github.com/GemeenteUtrecht/bptl

Keywords bpmn, camunda, external tasks, process engine, VNG, Common Ground

PythonVersion 3.8

A webapplication to configure and run worker units to process tasks from external engines. Currently it supports
Camunda external tasks .

Developed by Maykin Media B.V. for Gemeente Utrecht.

CONTENTS 1

https://github.com/GemeenteUtrecht/bptl
https://travis-ci.org/GemeenteUtrecht/bptl
https://docs.camunda.org/manual/7.12/user-guide/process-engine/external-tasks/
https://www.maykinmedia.nl

Business Process Task Library, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Common Ground zet in op een nieuwe, moderne gezamenlijke informatievoorziening. In het 5-lagen model van Com-
mon Ground worden gegevens gescheiden van Interactie en proces, waarbij gegevens via Services/APIs ontsloten wor-
den.

BPTL zet hierbij in op de Integratielaag. Vaak leiden stappen in een proces (wat leeft in een proces-engine zoals
Camunda) tot bepaalde taken die uitgevoerd dienen te worden tegen deze specifieke services/APIs.

In eerste instantie focust BPTL op de integratie met de API’s voor zaakgericht werken - stappen in het Camunda proces
leiden tot het aanmaken en bijwerken van Zaken, waarbij generieke bouwstenen opnieuw gebruikt kunnen worden voor
verschillende processen.

Uitbreiding met nieuwe (typen) van taken wordt eenvoudig, en het invullen van de procestaken met Camunda is
technologie-onafhankelijk door het gebruik van External Tasks.

Zie Architecture (EN) voor een overzicht van de architectuur.

3

https://commonground.nl/
https://github.com/VNG-Realisatie/gemma-zaken

Business Process Task Library, Release 0.1.0

4 Chapter 1. Introduction

CHAPTER

TWO

USAGE

2.1 Usage

2.1.1 Management commands

show_task_registry

A command to quickly see which tasks are registered in the project.

Example:

python src/manage.py show_task_registry

bptl.dummy.tasks.dummy

A dummy task to demonstrate the registry machinery.

The task receives the :class:`FetchedTask` instance and logs some information,
after which it completes the task.

2.1.2 Python API

Execute tasks

When an external task for a certain topic is received, you can use bptl.tasks.api.execute to process it. Pass the
FetchedTask instance and make sure that the required WorkUnit is added to the registry.

2.2 Deployment

For BPTL deployment, we recommend using the Docker images, available on Docker Hub.

The docker-compose.yml can provide a little insight in the required services.

5

https://hub.docker.com/r/scrumteamzgw/bptl

Business Process Task Library, Release 0.1.0

2.2.1 Dependencies

BPTL is tested against Camunda. Support for Activiti is minimal but generic in the form of REST API endpoints.

If you’re running against Camunda, you need:

• A Camunda instance with REST api, e.g. https://camunda.example.com/engine-rest/

• An API user with username/password credentials. The user needs at least the following permissions:

– READ, UPDATE, UPDATE_VARIABLE on Process Instance, with wildcard Resource ID.

2.2.2 Services

BPTL requires the following services:

• PostgreSQL 9.6 or higher database

• Redis as message queue broker, result store and in-memory cache for the web interface

• Some form of reverse proxy (e.g. Nginx, Traefik. . .)

The BPTL docker image contains the following executables:

• web worker (/start.sh)

• celery beat to kick off periodic tasks (/celery_beat.sh)

• celery worker (/celery_worker.sh)

• celery monitoring (/celery_flower.sh)

Celery is the tooling used for asynchronous background tasks, which is required if you use Camunda.

Queues

BPTL makes use of two distinct Celery queues, which means you will need to have at least one worker running on
each.

You can set the queue name via the CELERY_WORKER_QUEUE environment variable.

You can scale the parallel work-load by scaling the amount of workers.

Long-polling queue

This queue is intended for the long-polling tasks, which can run up to 30 minutes. Regular work may not be scheduled
on this queue, as it might be blocked behind such a long-polling job.

We recommend running two workers for high-availability set-up, but one should work too.

export CELERY_WORKER_QUEUE=long-polling
/celery_worker.sh

Worker queue

The worker queue is intended for jobs that should run asynchronously, but still complete in a matter of seconds.

export CELERY_WORKER_QUEUE=celery
/celery_worker.sh

6 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

Celery beat

Beat is used to periodically kick off tasks, you can compare it a little to cronjobs. It ensures that the long-polling is
initially started, and re-started in case a crash happens.

/celery_beat.sh

Celery monitoring

Flower is used for task monitoring. You should carefully protect the endpoint where Flower is hosted, as it gives insight
into the app settings. It’s meant for troubleshooting and should be developer/ops-only access.

/celery_flower.sh

2.2.3 Recap

If you’re running 100% on Docker, for a single BPTL instance you would have:

• 1 PostgreSQL database container

• 1 Redis container

• 1 web worker

• 1 celery beat

• 2 celery workers, long-polling queue

• 3 celery workers, celery queue

• 1 celery flower

• nginx on the host system or a suitable Kubernetes Ingress solution

2.3 Third party documentation

BPTL integrates with third parties. Sometimes, these third parties need configuration on their end.

2.3.1 ValidSign

Configuration

BPTL needs to receive callbacks from ValidSign.

1. Navigate to the admin > ValidSign configuration

2. There is a generated authentication key, and the callback URL you will need in ValidSign

3. Navigate to the ValidSign dashboard. From there, navigate to the admin

4. Click Integration

5. Enter the callback URL and authentication key in the relevant fields

6. Select the Transaction completed event

You also need to configure the ValidSign API key with the service in BPTL:

2.3. Third party documentation 7

https://my.validsign.nl/a/dashboard

Business Process Task Library, Release 0.1.0

1. See the integrator guide (page 10) on where you can find your API key

2. In BPTL, navigate to the admin > Services

3. Add a service, with the following fields:

• Label: ValidSign (for example)

• Type: ORC (Overige)

• API root URL: https://try.validsign.nl/ (sandbox) or https://my.validsign.nl/ (production)

• Authorization type: API key

• Header key: Authorization

• Header value: Basic <api key>

• OAS: https://apidocs.validsign.nl/validsign_openapi.yaml

Connecting to a topic

When you connect a topic name and the valid sign task(s), you must add the ValidSign service with the alias
ValidSignAPI.

Integration

BPTL can automate ValidSign package/transaction creation and configuration.

The bptl.work_units.valid_sign.tasks.CreateValidSignPackageTask takes documents and signer infor-
mation as input, and performs the following actions:

1. A package is created. The signers specified in the task process variables are included in the package when it is
created.

2. The documents are added to the package. All documents specified in the process variables are retrieved from
their respective API. For each document, an ‘approval’ is created. This is a field where a signer will be able to
sign. The approval is a field of dimensions 50x150 (px?) placed by the bottom left corner of the first occurrence
of the string Capture Signature.

3. The package status is changed to SENT. This automatically sends an email to the signers with links to where they
can sign the documents.

4. Once everyone has signed the package, ValidSign sends a callback to BPTL

5. BPTL processes the callback, and if configured, sends a BPMN message back to the process instance (Camunda
only).

2.3.2 Xential

Integration

BPTL can automate document creation using Xential templates.

The bptl.work_units.xential.tasks.start_xential_template() work-unit needs to know the UUID of the
template to use and whether to build the document interactively (the user fills the empty fields in the template) or
‘silently’. In the latter case, values to fill the template fields also need to be provided to the work-unit. For interactive
documents, they may be provided. Once the document is built, Xential sends it to BPTL, who then stores it in the
Documenten API.

8 Chapter 2. Usage

https://apidocs.validsign.nl/validsign_integrator_guide.pdf

Business Process Task Library, Release 0.1.0

The workflow for both the interactive and silent document creation is explained in more details below.

Silent document creation

The steps are as follows:

• BPTL requests the XSessionId from the Xential API. This is then included in every request.

• BPTL creates a ticket. The values to use to fill the template must be specified, as well as the template UUID and
the URL of the webhook.

• BPTL starts the procedure to create a document. Xential returns the document UUID as well as a URL that can
be used for interactively building the document (but this URL expires after 15 min).

• BPTL tells Xential to build the document. Once the document is successfully built, Xential sends it back to
BPTL.

• BPTL sends the document to the Documenten API. Depending on the configuration, it can send a message to
camunda to resume execution.

2.3. Third party documentation 9

Business Process Task Library, Release 0.1.0

Interactive document creation

The interactive creation of a document involves more steps:

• BPTL requests the XSessionId from the Xential API. This is then included in every request.

• BPTL creates a ticket. The template UUID and the URL of the webhook need to be specified. BPTL stores the
data related to this ticket and returns a BPTL URL to the user.

• When the user navigates to the BPTL URL, BPTL starts the procedure to create a document. Like in the silent
case, Xential returns the document UUID as well as a URL that can be used for interactively building the docu-
ment. This URL expires after 15 min. BPTL redirects the user to the Xential URL.

• Once the user has finished filling in the template and builds the document, Xential sends the document to the
BPTL webhook.

• BPTL sends the document to the Documenten API. Depending on the configuration, it can send a message to
camunda to resume execution.

Failures

A periodic task is configured to run every 12 hours to check for Xential errors.

Xential has an endpoint that can be queried to check the status of a particular document build. For both interactive and
silent document creation, if an error occurs during the document build Xential changes the status of the document from
NONE to ERROR.

The periodic task in BPTL looks for all open tickets with an associated document UUID. It then requests the status of
each document from Xential. If any document has an ERROR status, the BPTL task is marked as failed.

10 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

2.4 Camunda support

2.4.1 Management commands

fetch_and_lock_tasks

This command fetches and locks a number of external tasks for futher processing, from the Camunda instance. The
Camunda instance decides which tasks you get returned.

In its current form, only the topic zaak-initialize is recognized. Topic names are required input parameters for the
Camunda API call, which will be made dynamic in future iterations.

The task is locked for 10 minutes in its current implementation, and fetched tasks are visible in the admin interface.

Example:

python src/manage.py fetch_and_lock_tasks 1

2.4.2 Python API

Complete tasks

Whenever an external task for a certain topic is done/performed, the task itself needs to be completed and updated with
resulting process variables.

For this purpose, bptl.camunda.utils.complete_task exists. Pass the FetchedTask instance and a dict of
variable_name: value to update process variables. If no process variables need to be updated, you can leave
the variables off.

Note that this needs to happen within the expiry time for the tasks - when a task is fetched and locked, the lock expires
after a while. You can verify this in the admin.

2.5 Public API

2.5.1 Tasks and task registry

Expose the public API to manage tasks.

exception bptl.tasks.api.NoCallback

exception bptl.tasks.api.TaskExpired

exception bptl.tasks.api.TaskPerformed

bptl.tasks.api.execute(task: bptl.tasks.models.BaseTask, registry: bptl.tasks.registry.WorkUnitRegistry =
<bptl.tasks.registry.WorkUnitRegistry object>)→ dict

Execute the appropriate task for a fetched external task.

This function takes care of looking up the appropriate handler for a task from the registry, and then calls it,
passing the fetched task argument.

Parameters

• task – A BaseTask instance, that may not have expired yet.

2.4. Camunda support 11

Business Process Task Library, Release 0.1.0

• registry – A bptl.tasks.registry.TaskRegistry instance. This is the registry that
will be used to find the corresponding callback for the topic name. Defaults to the default
sentinel registry, mostly useful for tests.

Raises TaskExpired if the task is already expired, this exception is raised. You will need to re-fetch
and lock the task before you can process it.

Raises NoCallback if no callback could be determined for the topic.

Raises TaskPerformed if the task is already completed, this exception is raised.

2.5.2 Work units

Work units are python callbacks which process tasks from external engines. They are engine independent and can be
python functions or classes. Work units are registered in the registry.

API’s voor Zaakgericht Werken

class bptl.work_units.zgw.tasks.zaak.CloseZaakTask(task: bptl.tasks.models.BaseTask)
Close the ZAAK by setting the final STATUS.

A ZAAK is required to have a RESULTAAT.

Required process variables

• zaakUrl: full URL of the ZAAK

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables

• resultaattype: full URL of the RESULTAATTYPE to set. If provided the RESULTAAT is created
before the ZAAK is closed

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets the process variables

• einddatum: date of closing the zaak

• archiefnominatie: shows if the zaak should be destroyed or stored permanently

• archiefactiedatum: date when the archived zaak should be destroyed or transferred to the archive

class bptl.work_units.zgw.tasks.zaak.CreateZaakTask(task: bptl.tasks.models.BaseTask)
Create a ZAAK in the configured Zaken API and set the initial status.

The initial status is the STATUSTYPE with volgnummer equal to 1 for the ZAAKTYPE.

By default, the registratiedatum and startdatum are set to todays date.

Required process variables

• zaaktype: the full URL of the ZAAKTYPE

• organisatieRSIN: RSIN of the organisation

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

12 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

• services: DEPRECATED - support will be removed in 1.1

Optional process variables

• NLXProcessId: a process id for purpose registration (“doelbinding”)

• NLXSubjectIdentifier: a subject identifier for purpose registration (“doelbinding”)

• zaakDetails: a JSON object with extra properties for zaak creation. See https://zaken-api.vng.cloud/
api/v1/schema/#operation/zaak_create for the available properties. Note that you can use these to
override zaaktype, bronorganisatie, verantwoordelijkeOrganisatie, registratiedatum and
startdatum if you’d require so.

• initialStatusRemarks: a text to use for the remarks field on the initial status. Must be maximum 1000
characters.

• initiator: a JSON object with data used to create a rol for a particular zaak. See https:
//zaken-api.vng.cloud/api/v1/schema/#operation/rol_create for the properties available.

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets the process variables

• zaak: the JSON response of the created ZAAK

• zaakUrl: the full URL of the created ZAAK

• zaakIdentificatie: the identificatie of the created ZAAK

class bptl.work_units.zgw.tasks.zaak.LookupZaak(task: bptl.tasks.models.BaseTask)
Look up a single ZAAK by identificatie and bronorganisatie.

This task looks up the referenced zaak, and if found sets the zaakUrl as a process variable. If not found, the
variable will be empty.

You can use this to check if the referenced ZAAK does indeed exist, and relate it to other objects.

Required process variables

• identificatie: identification of the zaak, commonly known as “zaaknummer”

• bronorganisatie: RSIN of the source organization for the zaak. The combination of identificatie
and bronorganisatie uniquely identifies a zaak.

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets the process variables

• zaakUrl: the URL reference of the retrieved zaak, if retrieved at all. If the zaak was not found, the
value will be null

class bptl.work_units.zgw.tasks.status.CreateStatusTask(task: bptl.tasks.models.BaseTask)
Create a new STATUS for the ZAAK in the process.

Required process variables

• zaakUrl: full URL of the ZAAK to create a new status for

• statusVolgnummer: volgnummer of the status type as it occurs in the catalogus OR

2.5. Public API 13

https://zaken-api.vng.cloud/api/v1/schema/#operation/zaak_create
https://zaken-api.vng.cloud/api/v1/schema/#operation/zaak_create
https://zaken-api.vng.cloud/api/v1/schema/#operation/rol_create
https://zaken-api.vng.cloud/api/v1/schema/#operation/rol_create

Business Process Task Library, Release 0.1.0

• statustype: full URL of the STATUSTYPE to set

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Note that either statusVolgnummer or statustype are sufficient.

Optional process variables

• toelichting: description of the STATUS

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets the process variables

• statusUrl: the full URL of the created STATUS

class bptl.work_units.zgw.tasks.resultaat.CreateResultaatTask(task: bptl.tasks.models.BaseTask)
Set the RESULTAAT for the ZAAK in the process.

A resultaat is required to be able to close a zaak. A zaak can only have one resultaat.

Required process variables

• zaakUrl: full URL of the ZAAK to set the RESULTAAT for

• resultaattype: full URL of the RESULTAATTYPE to set

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables

• toelichting

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets the process variables

• resultaatUrl: the full URL of the created RESULTAAT

class bptl.work_units.zgw.tasks.zaak_relations.CreateEigenschap(task:
bptl.tasks.models.BaseTask)

Set a particular EIGENSCHAP value for a given zaak.

Unique eigenschappen can be defined for a given zaaktype. This task looks up the eigenschap reference for the
given zaak and will set the provided value.

Required process variables

• zaakUrl: URL reference to a ZAAK in a Zaken API. The eigenschap is created for this zaak.

• eigenschap: a JSON Object containing the name and value:

{
"naam": "eigenschapnaam as in zaaktypecatalogus",
"waarde": "<value to set>"

}

14 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables

• NLXProcessId: a process id for purpose registration (“doelbinding”)

• NLXSubjectIdentifier: a subject identifier for purpose registration (“doelbinding”)

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets no process variables

class bptl.work_units.zgw.tasks.zaak_relations.CreateZaakObject(task:
bptl.tasks.models.BaseTask)

Create a new ZAAKOBJECT for the ZAAK in the process.

Required process variables

• zaakUrl: full URL of the ZAAK to create a new ZaakObject for

• objectUrl: full URL of the OBJECT to set

• objectType: type of the OBJECT

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

If zaakUrl is not given - returns empty dictionary.

Optional process variables

• objectTypeOverige: description of the OBJECT type if objectType = ‘overige’

• relatieomschrijving: description of relationship between ZAAK and OBJECT

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets the process variables

• zaakObjectUrl: the full URL of the created ZAAKOBJECT

class bptl.work_units.zgw.tasks.zaak_relations.RelateDocumentToZaakTask(task:
bptl.tasks.models.BaseTask)

Create relations between ZAAK and INFORMATIEOBJECT

Required process variables

• zaakUrl: full URL of the ZAAK

• informatieobject: full URL of the INFORMATIEOBJECT. If empty, no relation will be created.

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

2.5. Public API 15

Business Process Task Library, Release 0.1.0

Sets the process variables

• zaakinformatieobject: full URL of ZAAKINFORMATIEOBJECT

class bptl.work_units.zgw.tasks.zaak_relations.RelatePand(task: bptl.tasks.models.BaseTask)
Relate Pand objects from the BAG to a ZAAK as ZAAKOBJECTs.

One or more PANDen are related to the ZAAK in the process as ZAAKOBJECT.

Required process variables

• zaakUrl: URL reference to a ZAAK in a Zaken API. The PANDen are related to this.

• panden: list of URL references to PANDen in BAG API.

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables

• NLXProcessId: a process id for purpose registration (“doelbinding”)

• NLXSubjectIdentifier: a subject identifier for purpose registration (“doelbinding”)

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets no process variables

class bptl.work_units.zgw.tasks.zaak_relations.RelateerZaak(task: bptl.tasks.models.BaseTask)
Relate a zaak to another zaak.

Different kinds of relations are possible, specifying the relation type will ensure this is done correctly. Existing
relations are not affected - if there are any, they are retained and the new relation is added.

Required process variables

• hoofdZaakUrl: URL reference to a ZAAK in a Zaken API. This zaak receives the relations.

• zaakUrl: URL reference to another ZAAK in a Zaken API, to be related to zaakUrl.

• bijdrageAard: the type of relation. One of vervolg, onderwerp or bijdrage.

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Optional process variables

• NLXProcessId: a process id for purpose registration (“doelbinding”)

• NLXSubjectIdentifier: a subject identifier for purpose registration (“doelbinding”)

• bijdrageAardOmgekeerdeRichting: the type of reverse relation. One of vervolg, onderwerp,
bijdrage or empty (""). Default is onderwerp if the process variable isn’t given.

Optional process variables (Camunda exclusive)

• callbackUrl: send an empty POST request to this URL to signal completion

Sets no process variables

16 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

class bptl.work_units.zgw.tasks.documents.GetDRCMixin
Temp workaround to get credentials for the relevant DRC.

The services var should contain a DRC alias key with credentials, but that’s currently a massive spaghetti. So,
we’ll allow for the time being that DRCs are all configured in BPTL, and we grab the right one from the document
URL.

class bptl.work_units.zgw.tasks.documents.LockDocument(task: bptl.tasks.models.BaseTask)
Lock a Documenten API document.

A locked document cannot be mutated without having the lock ID.

Required process variables

• informatieobject: String, API URL of the document to lock. The API must comply with the Docu-
menten API 1.0.x (https://vng-realisatie.github.io/gemma-zaken/standaard/documenten/index).

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Sets the process variables

• lockId: String, Lock ID for the locked document. Required to unlock or mutate the document.

class bptl.work_units.zgw.tasks.documents.UnlockDocument(task: bptl.tasks.models.BaseTask)
Unlock a Documenten API document.

Required process variables

• informatieobject: String, API URL of the document to lock. The API must comply with the Docu-
menten API 1.0.x (https://vng-realisatie.github.io/gemma-zaken/standaard/documenten/index).

• lockId: String, Lock ID for the locked DRC document, obtained from locking the document.

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls.

• services: DEPRECATED - support will be removed in 1.1

Sets no process variables

BRP

class bptl.work_units.brp.tasks.DegreeOfKinship(task: bptl.tasks.models.BaseTask)
Retrieve the degree of kinship from the BRP API.

Required process variables

• burgerservicenummer1: BSN of the first person

• burgerservicenummer2: BSN of the second person

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• kinship: integer, which represents the degree of kinship (blood relations). Values can be in range
[1..4] or Null if the BSNs are identical.

2.5. Public API 17

https://vng-realisatie.github.io/gemma-zaken/standaard/documenten/index
https://vng-realisatie.github.io/gemma-zaken/standaard/documenten/index

Business Process Task Library, Release 0.1.0

class bptl.work_units.brp.tasks.IsAboveAge(task: bptl.tasks.models.BaseTask)
Fetches BRP API and returns whether a person is exactly, or older than, a certain age.

Required process variables

• burgerservicenummer: BSN of the person

• age: integer, which represents the number of years

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

The task sets the process variables

• isAboveAge: boolean, which indicate if the requested person is equal or above a certain age. If the infor-
mation about person’s age is not found, isAboveAge will be set as none

Kadaster

bptl.work_units.kadaster.tasks.retrieve_openbare_ruimten(task: bptl.tasks.models.BaseTask)→
Dict[str, Any]

Given a bounding box (or other polygon), retrieve the ‘public space’ objects contained/overlapping.

This consumes the BRT API to fetch relevant objects, which are returned so that they can be drawn/selected on
maps as GeoJSON.

Checked resources:

• Wegdeel

• Terrein (in development)

• Inrichtingselement (in development)

Required process variables

• geometry: A GeoJSON geometry that is checked for overlap.

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the following return/process variables

• features: a list of GeoJSON features, in EPSG:4258 CRS. Properties contain feature-specific keys/values.

Note: The kadaster geo query APIs have long response times (up to 40s) - this work unit takes a considerable
time to execute.

18 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

Camunda

class bptl.work_units.camunda_api.tasks.CallActivity(task: bptl.tasks.models.BaseTask)
Start subprocess in Camunda

Required process variables

• subprocessDefinition: process definition key for the target subprocess to start.

Optional process variables

• subprocessDefinitionVersion: a specific version of the deployed subprocess. defaults to latest
if not set, which means the process will be kicked off by definition key.

• variablesMapping: JSON object to map variables from the parent process to be sent into the new
subprocess. If renaming is not needed, use the same name as a key and a value. If variablesMapping
is empty, the all parent variables are sent to subprocess unchanged.

{
"<source variable name>": "<target variable name>",

}

Sets the process variables

• processInstanceId: instance id of the created subprocess

ValidSign

class bptl.work_units.valid_sign.tasks.CreateValidSignPackageTask(task:
bptl.tasks.models.BaseTask)

Create a ValidSign package with signers and documents and send a signing request to the signers.

Required process variables

• documents: List of strings. List of API URLs where the documents to be signed can be retrieved.
The API must comply with the Documenten API 1.0.x (https://vng-realisatie.github.io/gemma-zaken/
standaard/documenten/index).

• signers: JSON list with signers information. For ValidSign, the first name, the last name and the
email address of each signer are required. Example signers:

[{
"email": "example.signer@example.com",
"firstName": "ExampleFirstName",
"lastName": "ExampleLastName"

},
{

"email": "another.signer@example.com",
"firstName": "AnotherFirstName",
"lastName": "AnotherLastName"

}]

• packageName: string. Name of the ValidSign package that contains the documents to sign and the signers.
This name appears in the notification-email that is sent to the signers.

• services: JSON Object of connection details for ZGW services:

2.5. Public API 19

https://vng-realisatie.github.io/gemma-zaken/standaard/documenten/index
https://vng-realisatie.github.io/gemma-zaken/standaard/documenten/index

Business Process Task Library, Release 0.1.0

{
"<drc alias1>": {"jwt": "Bearer <JWT value>"},
"<drc alias2>": {"jwt": "Bearer <JWT value>"}

}

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

• messageId: string. The message ID to send back into the process when the package is signed by ev-
eryone. You can use this to continue process execution. If left empty, then no message will be sent.

Sets the process variables

• packageId: string. ID of the ValidSign package created by the task.

add_documents_and_approvals_to_package(package: dict)→ List[dict]
Add documents and approvals to the package.

create_package()→ dict
Create a ValidSign package with the name specified by the process variable and add the signers to it.

format_signers(signers: List[dict])→ List[dict]
Format the signer information into an array of JSON objects as needed by ValidSign.

send_package(package: dict)
Change the status of the package to ‘SENT’

When the status of the package is changed, an email is automatically sent to all the signers with a link where
they can sign the documents.

exception bptl.work_units.valid_sign.tasks.DoesNotExist

exception bptl.work_units.valid_sign.tasks.NoAuth

exception bptl.work_units.valid_sign.tasks.NoService

class bptl.work_units.valid_sign.tasks.ValidSignReminderTask(task: bptl.tasks.models.BaseTask)
Email a reminder (with links) to signers that they need to sign documents through ValidSign.

Required process variables

• packageId: string with the ValidSign Id of a package

• email: the email address of the signer who needs a reminder

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets no process variables

20 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

Email

class bptl.work_units.email.tasks.SendEmailTask(task: bptl.tasks.models.BaseTask)
This task sends an email to receiver signed by sender.

Required process variables

• sender: JSON with required fields email and name of sender.

{
"email": "kees@example.com",
"name": "Kees Koos"

}

• receiver: JSON with required fields email and name of receiver.

{
"email": "jan@example.com",
"name": "Jan Janssen"

}

• email: JSON with required fields email subject and email content:

{
"subject": "This is an example subject.",
"content": "This is an example body."

}

• template: string with template name. Valid choices are:

[
"generiek",
"accordering",
"advies",
"nen2580"

]

• context: JSON with optional fields:

{
"kownslFrontendUrl": "https://kownsl.utrechtproeftuin.nl/kownsl/<uuid>/

→˓",
"deadline`": "2020-04-20"

}

Kownsl

bptl.work_units.kownsl.tasks.get_approval_status(task: bptl.tasks.models.BaseTask)→ dict
Get the result of an approval review request.

Once all reviewers have submitted their approval or rejection, derive the end-result from the review session. If
all reviewers approve, the result is positive. If any rejections are present, the result is negative.

In the task binding, the service with alias kownsl must be connected, so that this task knows which endpoints to
contact.

2.5. Public API 21

Business Process Task Library, Release 0.1.0

Required process variables

• kownslReviewRequestId: the identifier of the Kownsl review request.

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• approvalResult: a JSON-object containing meta-data about the result:

{
"approved": true,
"num_approved": 3,
"num_rejected": 0,
"approvers": ["mpet001", "will002", "jozz001"]

}

bptl.work_units.kownsl.tasks.get_approval_toelichtingen(task: bptl.tasks.models.BaseTask)→ dict
Get the “toelichtingen” of all reviewers that responded to the review request.

Required process variables

• kownslReviewRequestId: the identifier of the Kownsl review request.

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• toelichtingen: a string containing the “toelichtingen” of all reviewers.

bptl.work_units.kownsl.tasks.get_email_details(task: bptl.tasks.models.BaseTask)→ dict
Get email details required to build the email that is sent from the accordeer/adviseer sub processes in Camunda.

Required process variables

• kownslReviewRequestId: the identifier of the Kownsl review request.

• deadline: deadline of the review request.

• kownslFrontendUrl: URL that takes you to the review request.

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• email: a JSON that holds the email content and subject.

{
"subject": "Email subject",
"content": "Email content",

}

• context: a JSON that holds data relevant to the email:

22 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

{
"deadline": "2020-12-31",
"kownslFrontendUrl": "somekownslurl",

}

• template: a string that determines which template will be used for the email.

• senderUsername: a list that holds a string of the review requester’s username. This is used to determine
the email’s sender’s details.

bptl.work_units.kownsl.tasks.get_review_request_reminder_date(task: bptl.tasks.models.BaseTask)
→ dict

Get the reminder for the set of reviewers who are requested. The returned value is the deadline minus one day.

In the task binding, the service with alias kownsl must be connected, so that this task knows which endpoints to
contact.

Required process variables

• kownslReviewRequestId: the identifier of the Kownsl review request.

• kownslUsers: list of usernames that have been configured in the review request configuration.

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• reminderDate: a string containing the reminder date: “2020-02-29”.

• deadline: a string containing the deadline date: “2020-03-01”.

bptl.work_units.kownsl.tasks.get_review_response_status(task: bptl.tasks.models.BaseTask)→ dict
Get the reviewers who have not yet responded to a review request so that a reminder email can be sent to them if
they exist.

In the task binding, the service with alias kownsl must be connected, so that this task knows which endpoints to
contact.

Required process variables

• kownslReviewRequestId: the identifier of the Kownsl review request.

• kownslUsers: list of usernames that have been configured in the review request configuration.

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• remindThese: a JSON-object containing a list of usernames who need reminding:

[
"user1",
"user2",

]

bptl.work_units.kownsl.tasks.set_review_request_metadata(task: bptl.tasks.models.BaseTask)→ dict
Set the metadata for a Kownsl review request.

2.5. Public API 23

Business Process Task Library, Release 0.1.0

Metadata is a set of arbitrary key-value labels, allowing you to attach extra data required for your process rout-
ing/handling.

Required process variables

• kownslReviewRequestId: the identifier of the Kownsl review request.

• metadata: a JSON structure holding key-values of the metadata. This will be set directly on the matching
review request. Example:

{
"processInstanceId": "aProcessInstanceId"

}

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets no process variables

Xential

bptl.work_units.xential.tasks.start_xential_template(task: bptl.tasks.models.BaseTask)→ dict
Run Xential template with requested variables.

If the interactive task variable is:

• True: it returns a URL in bptlDocumentUrl for building a document interactively

• False: it returns an empty string in bptlDocumentUrl

In the task binding, the service with alias xential must be connected, so that this task knows which endpoints
to contact.

Required process variables

• bptlAppId: the application ID in the BPTL credential store

• templateUuid: the id of the template which should be started

• interactive: bool, whether the process will be interactive or not

• templateVariables: a JSON-object containing the data to fill the template. In an interactive flow, this
can be an empty object {}:

{
"variable1": "String",
"variable2": "String"

}

• documentMetadata: a JSON-object containing the fields required to create a document in the Documenten
API. The fields shown below are required. The property ‘creatiedatum’ defaults to the day in which the
document is sent to the Documenten API and the property ‘taal’ defaults to ‘nld’ (dutch).

{
"bronorganisatie": "string",
"titel": "string",
"auteur": "string",

(continues on next page)

24 Chapter 2. Usage

Business Process Task Library, Release 0.1.0

(continued from previous page)

"informatieobjecttype": "url"
}

Optional process variable

• messageId: string. The message ID to send back into the process when the document is sent to the
Documenten API. You can use this to continue process execution. If left empty, then no message will be
sent.

Sets the process variable

• bptlDocumentUrl: BPTL specific URL for interactive documents. If the document creation is not inter-
active, this will be empty.

ZAC

class bptl.work_units.zac.tasks.UserDetailsTask(task: bptl.tasks.models.BaseTask)
Requests email and name data from usernames from the zac and feeds them back to the camunda process.

Required process variables

• usernames: JSON with usernames.

[
"user1",
"user2",
"user3"

]

OR

• emailaddresses: JSON with email addresses.

[
"user1@email",
"user2@email"

]

Optional process variables

• bptlAppId: the application ID of the app that caused this task to be executed. The app-specific credentials
will be used for the API calls, if provided.

Sets the process variables

• userData: a JSON-object containing a list of user names and emails:

[
{

"name": "FirstName LastName",
"username": "username",
"email": "test@test.nl"

}
]

2.5. Public API 25

Business Process Task Library, Release 0.1.0

2.5.3 Camunda tasks

Module for Camunda API interaction.

bptl.camunda.utils.complete_task(task: bptl.camunda.models.ExternalTask, variables: Optional[Dict[str,
Union[str, int, bool]]] = None)→ None

Complete an External Task, while optionally setting process variables.

API reference: https://docs.camunda.org/manual/7.12/reference/rest/external-task/post-complete/

If a task variable callbackUrl is available, a post request is made to it.

Note that we currently only support setting process variables and not local task variables.

Camunda performs optimistic table locking, see the docs. This results in HTTP 500 exceptions being thrown
when concurrent mutations to the process instance happen. The recommended way to deal with this by Camunda
is to retry the operation to reach eventual consistency, which is why the @retry decorator applies.

bptl.camunda.utils.fail_task(task: bptl.camunda.models.ExternalTask, reason: str = '')→ None
Mark an external task as failed.

See https://docs.camunda.org/manual/7.11/reference/rest/external-task/post-failure/

When the number of retries becomes 0, an incident is created in Camunda.

bptl.camunda.utils.fetch_and_lock(max_tasks: int, long_polling_timeout=None)→ Tuple[str, int, list]
Fetch and lock a number of external tasks. API reference: https://docs.camunda.org/manual/7.12/reference/rest/
external-task/fetch/

26 Chapter 2. Usage

https://docs.camunda.org/manual/7.12/reference/rest/external-task/post-complete/
https://docs.camunda.org/manual/latest/user-guide/process-engine/transactions-in-processes/#common-places-where-optimistic-locking-exceptions-are-thrown
https://docs.camunda.org/manual/7.11/reference/rest/external-task/post-failure/
https://docs.camunda.org/manual/7.12/reference/rest/external-task/fetch/
https://docs.camunda.org/manual/7.12/reference/rest/external-task/fetch/

CHAPTER

THREE

DEVELOPERS

3.1 Architecture

BPTL is a middle-man in your application landscape. It “talks” to APIs or performs task when asked to do so.

A typical layout of your application landscape would be the following set-up:

• a number of user-facing applications start process instances - they communicate with the API of your process
engine (e.g. Camunda)

• process definitions can change as often as needed because of business needs

• processes require input or processing from certain data-sources that you wish to automate

• data needs to be stored in the appropriate locations

BPTL solves the last two items - it helps automating very specific tasks that are too complex for BPMN, but not complex
enough to warrant an entire, dedicated application.

3.1.1 BPTL Components

BPTL consists of a number of components that make it work for various use cases.

Work units

Work units are logical units of work that can be performed. This can be a collection of API calls, for example to create
a Zaak, or to check if someone’s age is above a certain number, using the BRP API’s. These are the steps that you
want to “embed” in your process.

Work units are grouped around themes, such as the ZGW APIs, the BRP, Camunda API or the Kadaster APIs.

Work units are implemented in Python code.

Web interface

The web interface allows you to configure work-units to a certain topic. This way, you can use meaningful names in
your process, or decide to only let BPTL handle a subset of topics relevant for you, and another solution for other
specialized topics.

Additionally, the web interface provides you monitoring and debug-information for if/when something goes wrong.

Workers

Workers are responsible for performance of the work-units. Whenever a task is picked up from the task queue, a
worker is assigned to execute it. Workers can be scaled independently from the web-interface, and they prevent the
web-interface from locking up during long-running tasks.

Beat

27

Business Process Task Library, Release 0.1.0

Beat is used to periodically fire tasks that workers need to perform. Beat is essential to poll Camunda for new work to
assign to the workers.

Task monitoring

The communication between web, workers and beat is monitored to see if tasks get dropped or investigating where
scaling is needed.

Timeline

A typical timeline is the following:

1. Process execution is started

2. Process execution arrives at an external task

3. External task is put on the queue

4. BPTL polling picks up the queued task

5. BPTL assigns the task to a worker

6. BPTL worker performs the related work unit

7. BPTL worker marks the task as completed

8. Process execution continues to the next waiting point

3.1.2 Process engines

Currently, two process engines are supported to varying degrees:

• Camunda: arguably the most fleshed out, and the target architecture

• Activiti: a proof of concept showed promising results

3.1.3 Camunda architecture

The above Timeline describes Camunda architecture.

Camunda uses a service-task implementation called External Task. Whenever a process execution arrives at an exter-
nal task, the task is put on a queue with its topic name.

BPTL periodically polls the Camunda queue for work, and it does so by only asking about topics that BPTL is configured
to handle.

Whenever work is picked up, the task is locked and handled by BPTL. BPTL either completes it and sets the relevant
process variables, or marks the task as failed if errors occur. The failure information is visible in BPTL monitoring and
in the Camunda cockpit.

28 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

3.1.4 REST-full API architecture

Activiti does not use a queue to schedule work. Instead, you can include REST-call activities in the process definition.
BPTL offers a REST-full API to call/execute work units, using a similar format to Camunda’s external tasks.

The API endpoints can also be used by other applications who wish to re-use the building blocks offered by BPTL.

In this configuration, the workers, beat and task monitoring are not relevant.

3.2 Work units

Work units are the building blocks of BPTL. They are the smallest units that can be executed by themselves, while
having sufficient meaning.

Work units typically require input variables, process these and do some work, and finally (optionally) return output
variables.

3.2.1 Work unit interface

Work units have two possible interface: function or class based. Function based work units are easiest to reason about,
while class-based units are suited to more complex units.

Function based

A function based unit follows the following pattern:

def some_work_unit(task):
... extract relevant variables

... perform work

return {"foo": "bar"} # return relevant result variables

See for example bptl.dummy.tasks.dummy.

Class based

Class based work units allow you to split up work into methods.

Example:

from bptl.tasks.base import WorkUnit

class MyWorkUnit(WorkUnit):

def perform(self):
... extract relevant variables

... perform work

return {"foo": "bar"} # return relevant result variables

3.2. Work units 29

Business Process Task Library, Release 0.1.0

The unit constructor receives the task instance as sole argument.

3.2.2 Registering work units

Work units can be contributed to BPTL, or can be defined in third-party packages.

Autodiscover

Work units are auto-discovered for Django apps in the tasks module, so make sure to:

1. Add your app to INSTALLED_APPS

2. Define your units in myapp.tasks

or, alternatively, you can use the ready hook in your AppConfig to import the relevant tasks module.

Registration

Registering work units is done by decorating them with bptl.tasks.registry.register, which is the default
registry:

from bptl.tasks.registry import register

@register
class SomeWorkUnit(WorkUnit):

...

@register
def another_work_unit(task):

...

Defining required services

Work units often interact with various external services, which require authentication. You can declare which type of
services with which aliases are required for a work-unit, and then safely use those aliases in the code to build a client
and retrieve credentials.

The forms to configure task mappings will validate that the declared required services are configured correctly.

Example:

from bptl.tasks.registry import register

@register
@register.require_service("zrc", "The Zaken API to use", alias="zrc")
def some_work_unit(task):

service = DefaultService.objects.get(
task_mapping__topic_name=task.topic_name,
alias="zrc"

).service
...

30 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

The decorator is currently only used for form validation.

bptl.tasks.registry.register.require_service(service_type: str, description: str = '', alias: str = '')
Decorate a callback with the required service definitions.

Used to validate the task mappings to ensure the required services are present. This self-documents which service
aliases must be used for the callback to be able to function.

Authenticating in a work unit

BPTL executes work units on behalf of another application, often through a process engine. For auditing purposes,
you should not interface to external services with “blanket” BPTL credentials, but instead use application specific
credentials.

BPTL has a credential store containing the credentials for a particular application (identified by an “App ID”) for each
service it needs to interact with. To use this, you must:

1. Extract the bptlAppId process variable from the task:

@register
def some_work_unit(task):

app_id = check_variable(task.get_variables(), "bptlAppId")

2. Determine the required service(s):

@register
@register.require_service("zrc", "The Zaken API to use", alias="zrc")
@register.require_service("drc", "The Documenten API to use", alias="drc")
def some_work_unit(task):

app_id = check_variable(task.get_variables(), "bptlAppId")
default_services = DefaultService.objects.get(

task_mapping__topic_name=task.topic_name,
alias__in=["zrc", "drc"]

)
services = {

default_service.alias: default_service.service
for default_service in default_services

}

3. Obtain the application-specific credentials:

@register
@register.require_service("zrc", "The Zaken API to use", alias="zrc")
@register.require_service("drc", "The Documenten API to use", alias="drc")
def some_work_unit(task):

app_id = check_variable(task.get_variables(), "bptlAppId")
default_services = DefaultService.objects.get(

task_mapping__topic_name=task.topic_name,
alias__in=["zrc", "drc"]

)
services = {

default_service.alias: default_service.service
for default_service in default_services

}
auth_headers = get_credentials(app_id, services["zrc"], services["drc"])

(continues on next page)

3.2. Work units 31

Business Process Task Library, Release 0.1.0

(continued from previous page)

zrc_client = services["zrc"].build_client()
zrc_client.set_auth_value(auth_headers[services["zrc"]])

drc_client = services["drc"].build_client()
drc_client.set_auth_value(auth_headers[services["drc"]])

The public api to get the credentials is:

bptl.credentials.api.get_credentials(app_id: str, *services: zgw_consumers.models.Service)→
Dict[zgw_consumers.models.Service, Dict[str, str]]

3.2.3 Task interface

Work units receive the task instance that they should execute. This is always a subclass of bptl.tasks.models.
BaseTask :

class bptl.tasks.models.BaseTask(*args, **kwargs)
An external task to be processed by work units.

Use this as the base class for process-engine specific task definitions.

exception DoesNotExist

exception MultipleObjectsReturned

get_variables()→ dict
return input variables formatted for work_unit

Subclasses are aimed at particular process engines, and are expected to implement the bptl.tasks.models.
BaseTask.get_variables() interface correctly.

3.2.4 Best practices

Documentation

Document your work unit extensively! You can use RST - the docstring is extracted into the task documentation and
displayed in the web-interface, admin, and even command line output. The recommended format is:

def work_unit(task):
"""
Describe a short summary of what the task does.

Required process variables

* ``var``: a string representing an example

Optional process variables

* ``foo``: if provided, will summon Chtulhu

Optional process variables (engine specific)

* ``bar``: complex JSON variable with the following structure:
(continues on next page)

32 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

(continued from previous page)

.. code-block:: json

{"ok": "I lied"}

Sets the process variables

* ``quux``: PI with all decimals, ever

"""

Variable extraction

Use the bptl.tasks.models.BaseTask.get_variables() to obtain the variables. This takes care of deserial-
ization into the appropriate Python data-type, and is responsible for abstracting away the differences between process
engines.

Use bptl.tasks.base.check_variable to retrieve (soft-)required process variables:

bptl.tasks.base.check_variable(variables: dict, name: str, empty_allowed=False)

It will raise a clear error when a process variable is missing, and shortcuts the unit execution.

3.3 General information

This section briefly describes the project structure and framework that was used to built this project.

3.3.1 CSS

CSS code is generated by SASS, we use the .scss syntax. We prefer a component based approach using the BEM
methodology: https://en.bem.info/methodology/key-concepts/.

In addition to BEM we limit the scope of components to the “border-box” preventing components from defining a
margin on itself. Parent components control the margins of its children.

The view is a component without parents and should be directly linked to a template. It’s role is to “orchestrate” child
components.

To compile SASS to CSS run:

$ gulp sass

To create a new component run

$ gulp create-component --name my-compoment-name --scss

To create a new view run

$ gulp create-view --name my-compoment-name --scss

3.3. General information 33

https://en.bem.info/methodology/key-concepts/

Business Process Task Library, Release 0.1.0

3.3.2 JavaScript

JavaScript code is written in ECMAScript 2015 (ES6) and transpiled using webpack and babel. Therefore, all non-
compiled code is placed outside the static directory into src/bptl/js/.

We write modules for every component/view matching the BEM structure provides by SASS.

Compiling ES6 to ES5:

$ gulp js

To create a new component run

$ gulp create-component --name my-compoment-name --js

To create a new view run

$ gulp create-view --name my-compoment-name --js

All third party libraries should be installed using npm:

$ npm install --save <package>

or:

$ npn install --save-dev <package>

After installing libraries can be included using ES6 imports:

import <package> from '<package>';

Exceptions

When you need to override third-party JavaScript you still need to manually place files into src/bptl/static/.

3.4 Coding style

Below you can find some best practices to maintain a good coding style. There are detailed coding style guides for the
frontend <coding_style_frontend> and the backend <coding_style_backend>.

3.4.1 Backend coding style

The django coding style is the basis for this styleguide. Some sections dive a bit deeper or put extra emphasis.

34 Chapter 3. Developers

https://docs.djangoproject.com/en/stable/internals/contributing/writing-code/coding-style/

Business Process Task Library, Release 0.1.0

Imports

In short: use isort to check your import ordering. The config file is in setup.cfg.

Order and group your imports

• Use relative imports for your django app

• Ordering:

– future

– standard libraries

– Django components

– third party libraries

– project imports

– local (app) imports

Example:

from __future__ import absolute_import, unicode_literals

import datetime
from datetime import timedelta

import django.contrib.admin

import bptl.other_app.models

from .models import SomeModel

Naming

• Use plural form for apps. E.g.: accounts, not account.

• Use singular form for model, view and form class

Example:

from bptl.accounts.models import Account

class Idea(models.Model):
pass

class IdeaForm(forms.ModelForm):
pass

class IdeaDetailView(views.DetailView):
pass

3.4. Coding style 35

https://pypi.python.org/pypi/isort

Business Process Task Library, Release 0.1.0

3.4.2 Frontend coding style

Shortcuts:

• HTML

• Sass

• JavaScript

HTML

Common

• Inline style is evil

<p style="color: red;">
Inline style cannot be cached.

Inline style is difficult to overwrite.

Inline style makes HTML less readable.

Inline style is harder to spot.

</p>

• Inline script is evil (except Google Analytics)

<script>
console.log('Inline script cannot be cached.');
console.log('Inline script makes HTML less readable.');
console.log('Inline script blocks loading of page.');

</script>

• Style your HTML, don’t HTML your style (avoid adding divs for style)

<div class="wrapper">
<div class="inner">

<div class="content">
<p class="text>

All these tags have no acutual meaning.

Consider HTML as data model, it should represent data, not style␣

→˓placeholders.

Good practice is to write you HTML first, based on the structure of␣

→˓the content, then style.

It's almost never needed to add more tags, have you tried :before␣

→˓and :after yet?

</p>

</div>
</div>

</div>

• Empty newline at the end of the file.

36 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

Indentation

• Indent with 4 spaces

<html>
<body>
</body>

</html>

• Indent HTML and template tags. (except {% block %} on root level).

{% block content %}
<article>

{% if show_header %}
{% block article__header %}

<header>
</header>

{% endblock article__header %}
{% endif %}

</article>
{% endblock content %}

Data-attributes

• (Meta)data should be stored in data- attributes.

<article data-article-id="1">...</article>

• Variables should be passed using data-attributes as well. They are no excuse for inline script.

<article data-some-variable="1">...</article>

Elements

• Avoid the id attribute, unless there’s a good reason.

<article id="article-1" /> <!-- wrong -->
<article class="article" data-id="1" /> <!-- better -->

<!-- ok, since it's useful in unit tests with WebTest -->
<form id="submit-article">...</form>

• Use semantic tags like <main>, <nav>, <article>, <section>, <aside>, <footer> instead of meaningless
<div> s.

<!DOCTYPE html>
<html>

<head></head>
<body>

<main>
<nav>

(continues on next page)

3.4. Coding style 37

http://www.hongkiat.com/blog/html-5-semantics/

Business Process Task Library, Release 0.1.0

(continued from previous page)

</nav>

<article>
<header></header>
<section></section>
<section></section>
<footer></footer>

</article>

<footer>
</footer>

</main>
</body>

</html>

Sass

Common

• Readability comes first

• Annotate when useful

Globals

• Avoid global styling - leave that to the CSS reset.

• Limit global configuration to: - Grid - Breakpoints - Colors - Font definitions

Indentation

• Indent using two spaces

.block {
width: 100%;

}

Nesting

• Namespace BEM blocks

.block {
// Everything should be nested inside .block
// This makes sure no elements "bleed" to the global scope
.block__element {
...

}
}

38 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

• Nest maximum 3 levels deep

.block { // One
.block__element { // Two
&:hover { // Three
color: #0000FF;

}
}

}

Newlines

• 1 empty newline after mixin/variable block

.block__element-one {
}

.block__element-two {
}

• Empty newline at the end of the file.

Order

• Block modifiers come before block elements, element modifier come after the element. Example:

.block { // .block is the basic element
// --active is the modifier for .block, and should be grouped with .block
&.block--active {
}

// __element is a child element dependent on .block
.block__element {
}

// --disabled is the modifier for .block__element, and should be grouped with .
→˓block__element
.block__element--disabled {
}

}

• Mixins always come first, and then group attributes logically.

Mixins come first so that their behaviour can still be overridden. Logical groups are for example text styling and
borders.

.block {
@include span-columns(4 of 12);

font-size: 18px;
color: #FFF;

(continues on next page)

3.4. Coding style 39

Business Process Task Library, Release 0.1.0

(continued from previous page)

border: solid 1px #FFFF00;
border-radius: 5px;

}

Selectors

• Use BEM class naming.

// BEM (Block, Element, Modifier) is a structured naming convention for CSS classes
// A double underscore (__) separates the element from a block
// A double dash (--) separates the modifier from the block or element
// These fixed patters make it also possible to be parsed by (JavaScript) code

.block { // A block describes a standalone component
&.block--modifier { // A modifier describes a state or theme for eithe a block␣

→˓or an element
}

.block__element { // An element is a component that depends on a block
}

.block__element--modifier { // This modifier desrcibes the state or theme for an␣
→˓element
}

}

• Maximum one BEM block per file

// file src/bptl/sass/components/blocks/_block.scss

.block { // That's it, no more blocks in this file
// ...

}

• Only select using (BEM) class names (.block__element), not using tag/id.

div { // Bad, tags may change an that would break our code
}

article { // Also bad, event semantic (descriptive) tags may change
}

h1 { // Also bad, a marketeer may drop in and ask you to change it into an h2␣
→˓(design will break and designer will be mad)
}

#content { // Bad, we can't repeat this anymore because id's must be unique
}

.content { // Better, content is our block
.content__heading { // Better, content__heading is a valid class name for an h1,␣

→˓or h2 in block content (continues on next page)

40 Chapter 3. Developers

http://stackoverflow.com/documentation/css/5302/bem#t=201608181228046431355

Business Process Task Library, Release 0.1.0

(continued from previous page)

}
.content__body { // This could be a class name for a paragraph in block content
}

}

.wysiwyg-content {
h1 { // Necessity breaks rule - WYSIWYG editors don't adhere to BEM.
}

}

Variables

Privatize variables by assigning them on top of the module.

$article-color: $color; // We copy the contents of a global variable into a private one
$article-font: $font; // This allow us easily "fix" the values and reuse our component

.article {
color: $article-color; // We use private values here
font-family: $article-font;

}

JavaScript

Common

• Readability first

• Annotate when useful - e.g. input for functions/methods and return values/types.

/**
* Helper method to add an additional class name with a specific modifier (--
→˓modifier) to a BEM (Block Element Modifier) element
* A modifier class is created for each of the existing class names
* Class names containing "--" (modifier pattern) are discarded
* Double class names are prevented
* @param {HTMLElement} node The block/element to append the class name to (block,␣
→˓block__element)
* @param {String} modifier The name of the modifier (--name)
*/
function addModifier(node, modifier) {
}

3.4. Coding style 41

Business Process Task Library, Release 0.1.0

Indentation

• Indent using 4 spaces

Classes

• Use TitledCamelCase for class names

class Header { // Bonus points: match class to BEM block name
}

Conditionals

• Put a space between the operator and brackets

if (foo === 'bar') {
// ...

}

Constants

• Use the const keyword

• Use UPPERCASE

• Put constants at the top of the module, below the imports

import {Foo} from 'bar.js';

const MY_AWESOME_CONSTANT = 'foo';

Event binding

• Separate wiring events with event handlers from logic

class Handler {

/**
* We separate "wiring" from the main logic so we can resure the logic
*/

setUpOpen() {
BUTTON_OPEN.addEventListener('click', this.open.bind(this));

}

/**
* We can now reuse `this`
*/

open(event) {
// `this` points to the `handler` instance

(continues on next page)

42 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

(continued from previous page)

}

}

Functions

• use camelCase names

• no space between function and brackets

• opening bracket goes on the same line, closing bracket has its own line

Example:

function fooBar(arg1, arg2) {
// ...

}

Line breaks/newlines

• watch the line length: soft limit on 79 characters, hard limit on 119

• no newline inside logical block:

function doFooBar() {

// ^ Bad, keep related code together
console.log('indent', 4, 'spaces');

}

• Empty newline after method/variable block.

function doFooBar() {
let fooBar = 'foobar';

console.log(fooBar);
}

• 2 empty lines after top level function/class/block

const FOO = 'foo';
const BAR = 'bar';

function doFooBaz() { // 2 Empty newlines after a block of constants
console.log('foobaz');

}

class Foo { // 2 Empty newlines after a top level function
constructor() {

super();
(continues on next page)

3.4. Coding style 43

Business Process Task Library, Release 0.1.0

(continued from previous page)

this.doBar();
}

doBar() { // 1 Empty newline after method
let bar = new Bar();

}
}

class Bar { // 2 Empty newlines after a class
constructor() {

super();
this.doBar();

}

doBar() {
let bar = new Bar();

}
}

• Empty newline at the end of the file

Variables

• Use the let keyword instead of var

• Group variable declarations together

• Use camelCase names

Example:

function doFooBar() {
let foo = 'foo',

bar = 'bar',
fooBar = foo+bar;

console.log(fooBar);
}

Tests

• Name the test files foo.spec.js. .spec indicates that it’s a test file

44 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

3.4.3 Best practices

HTML

• Write semantic HTML before styling.

• Style your HTML, don’t HTML your style.

• Don’t put content in master.html, only put boilerplate/scaffolding here.

• Use inclusion tags for reusable components and blocks otherwise.

• Wrap components/logical page blocks/standalone sections in {% block %} tags.

• Respect the coding style <coding_style_frontend>.

• If it makes sense to divert, divert.

CSS/SASS

• Bootstrap is only allowed for quick prototyping (you discard it later).

• Adhere to the BEM naming standard.

• Match component (file)names to Django template blocks.

• Maximum 1 BEM block per sass file.

• Only select using (BEM) class names (.block__element), avoid using tag/id (Matching id’s breaks reusability,
matching tags breaks flexibility).

• WYSIWYG is an exception (customers don’t type content__heading–primary).

• The Block (B in BEM) cannot set margin on itself, only on children. This avoids spacing issues.

• Use Neat mixins for (responsive) grids. Avoid complex overdoing mixins (e.g. Bourbon).

• Respect the coding style <coding_style_frontend>.

• Compile to CSS and keep the compiled css in version control.

• If it makes sense to divert, divert.

Javascript

• These libraries/tools are deprecated - better alternatives exist: - Bootstrap - Bower - Django Pipeline/Compressor
- jQuery - RequireJS

• Keep the existing, working setup in older projects.

• Match component (file)names to Django template blocks.

• Write (object oriented) ES6 or newer.

• No dialects (typescript/coffeescript).

• Use a bundler (jspm or webpack) to manage dependencies/transpiling.

• gulp is our task runner (manage.py for frontend).

• Keep the JS source in the static folder per Django app.

• Respect the coding style <coding_style_frontend>.

• If it makes sense to divert, divert.

3.4. Coding style 45

https://docs.djangoproject.com/en/stable/howto/custom-template-tags/#inclusion-tags
http://stackoverflow.com/documentation/css/5302/bem#t=201608181228046431355
http://es6-features.org/

Business Process Task Library, Release 0.1.0

3.5 Testing

This document covers the tools to run tests and how to use them.

3.5.1 Django tests

Run the project tests by executing:

$ python src/manage.py test src --keepdb

To measure coverage, use coverage run:

$ coverage run src/manage.py test src --keepdb

It may be convenient to add some aliases:

$ alias runtests='python src/manage.py test --keepdb'
$ runtests src

and:

$ alias cov_runtests='coverage run src/manage.py test --keepdb'
$ cov_runtests src && chromium htmlcov/index.html

Jenkins

Run ./bin/jenkins_django.sh to execute the tests for develop and master. This script runs the tests with
--keepdb.

To run PR tests, run ./bin/jenkins_django_pr.sh. This script drops the test database at the end, so it should be
safe with different migrations between PR’s.

3.5.2 SASS build - Jenkins

There is a simple ./bin/jenkins_sass.sh script that checks if the sass compiles successfully.

3.5.3 Javascript tests

There are quite some options to run the Javascript tests. Karma is used as test-runner, and you need to install it globally
if you have never done so:

$ sudo npm install -g karma

By default, the tests are run against PhantomJS and Chrome/Chromium. To run the tests, execute:

$ gulp test

If you want to target a single browser, you can run karma directly:

$ karma start karma.conf.js --single-run --browsers=PhantomJS

46 Chapter 3. Developers

Business Process Task Library, Release 0.1.0

Coverage reports can be found in build/reports/coverage.

To trigger a test run on file change (source file or test file), run:

$ karma start karma.conf.js --single-run=false --browsers=PhantomJS

3.5. Testing 47

Business Process Task Library, Release 0.1.0

48 Chapter 3. Developers

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

49

Business Process Task Library, Release 0.1.0

50 Chapter 4. Indices and tables

PYTHON MODULE INDEX

b
bptl.camunda.utils, 26
bptl.tasks.api, 11
bptl.work_units.brp.tasks, 17
bptl.work_units.camunda_api.tasks, 19
bptl.work_units.email.tasks, 21
bptl.work_units.kadaster.tasks, 18
bptl.work_units.kownsl.tasks, 21
bptl.work_units.valid_sign.tasks, 19
bptl.work_units.xential.tasks, 24
bptl.work_units.zac.tasks, 25
bptl.work_units.zgw.tasks.documents, 16
bptl.work_units.zgw.tasks.resultaat, 14
bptl.work_units.zgw.tasks.status, 13
bptl.work_units.zgw.tasks.zaak, 12
bptl.work_units.zgw.tasks.zaak_relations, 14

51

Business Process Task Library, Release 0.1.0

52 Python Module Index

INDEX

A
add_documents_and_approvals_to_package()

(bptl.work_units.valid_sign.tasks.CreateValidSignPackageTask
method), 20

B
BaseTask (class in bptl.tasks.models), 32
BaseTask.DoesNotExist, 32
BaseTask.MultipleObjectsReturned, 32
bptl.camunda.utils

module, 26
bptl.tasks.api

module, 11
bptl.work_units.brp.tasks

module, 17
bptl.work_units.camunda_api.tasks

module, 19
bptl.work_units.email.tasks

module, 21
bptl.work_units.kadaster.tasks

module, 18
bptl.work_units.kownsl.tasks

module, 21
bptl.work_units.valid_sign.tasks

module, 19
bptl.work_units.xential.tasks

module, 24
bptl.work_units.zac.tasks

module, 25
bptl.work_units.zgw.tasks.documents

module, 16
bptl.work_units.zgw.tasks.resultaat

module, 14
bptl.work_units.zgw.tasks.status

module, 13
bptl.work_units.zgw.tasks.zaak

module, 12
bptl.work_units.zgw.tasks.zaak_relations

module, 14

C
CallActivity (class in

bptl.work_units.camunda_api.tasks), 19
check_variable() (in module bptl.tasks.base), 33
CloseZaakTask (class in

bptl.work_units.zgw.tasks.zaak), 12
complete_task() (in module bptl.camunda.utils), 26
create_package() (bptl.work_units.valid_sign.tasks.CreateValidSignPackageTask

method), 20
CreateEigenschap (class in

bptl.work_units.zgw.tasks.zaak_relations),
14

CreateResultaatTask (class in
bptl.work_units.zgw.tasks.resultaat), 14

CreateStatusTask (class in
bptl.work_units.zgw.tasks.status), 13

CreateValidSignPackageTask (class in
bptl.work_units.valid_sign.tasks), 19

CreateZaakObject (class in
bptl.work_units.zgw.tasks.zaak_relations),
15

CreateZaakTask (class in
bptl.work_units.zgw.tasks.zaak), 12

D
DegreeOfKinship (class in bptl.work_units.brp.tasks),

17
DoesNotExist, 20

E
execute() (in module bptl.tasks.api), 11

F
fail_task() (in module bptl.camunda.utils), 26
fetch_and_lock() (in module bptl.camunda.utils), 26
format_signers() (bptl.work_units.valid_sign.tasks.CreateValidSignPackageTask

method), 20

G
get_approval_status() (in module

bptl.work_units.kownsl.tasks), 21
get_approval_toelichtingen() (in module

bptl.work_units.kownsl.tasks), 22

53

Business Process Task Library, Release 0.1.0

get_credentials() (in module bptl.credentials.api),
32

get_email_details() (in module
bptl.work_units.kownsl.tasks), 22

get_review_request_reminder_date() (in module
bptl.work_units.kownsl.tasks), 23

get_review_response_status() (in module
bptl.work_units.kownsl.tasks), 23

get_variables() (bptl.tasks.models.BaseTask method),
32

GetDRCMixin (class in
bptl.work_units.zgw.tasks.documents), 16

I
IsAboveAge (class in bptl.work_units.brp.tasks), 17

L
LockDocument (class in

bptl.work_units.zgw.tasks.documents), 17
LookupZaak (class in bptl.work_units.zgw.tasks.zaak), 13

M
module

bptl.camunda.utils, 26
bptl.tasks.api, 11
bptl.work_units.brp.tasks, 17
bptl.work_units.camunda_api.tasks, 19
bptl.work_units.email.tasks, 21
bptl.work_units.kadaster.tasks, 18
bptl.work_units.kownsl.tasks, 21
bptl.work_units.valid_sign.tasks, 19
bptl.work_units.xential.tasks, 24
bptl.work_units.zac.tasks, 25
bptl.work_units.zgw.tasks.documents, 16
bptl.work_units.zgw.tasks.resultaat, 14
bptl.work_units.zgw.tasks.status, 13
bptl.work_units.zgw.tasks.zaak, 12
bptl.work_units.zgw.tasks.zaak_relations,

14

N
NoAuth, 20
NoCallback, 11
NoService, 20

R
RelateDocumentToZaakTask (class in

bptl.work_units.zgw.tasks.zaak_relations),
15

RelateerZaak (class in
bptl.work_units.zgw.tasks.zaak_relations),
16

RelatePand (class in bptl.work_units.zgw.tasks.zaak_relations),
16

require_service() (in module
bptl.tasks.registry.register), 31

retrieve_openbare_ruimten() (in module
bptl.work_units.kadaster.tasks), 18

S
send_package() (bptl.work_units.valid_sign.tasks.CreateValidSignPackageTask

method), 20
SendEmailTask (class in bptl.work_units.email.tasks),

21
set_review_request_metadata() (in module

bptl.work_units.kownsl.tasks), 23
start_xential_template() (in module

bptl.work_units.xential.tasks), 24

T
TaskExpired, 11
TaskPerformed, 11

U
UnlockDocument (class in

bptl.work_units.zgw.tasks.documents), 17
UserDetailsTask (class in bptl.work_units.zac.tasks),

25

V
ValidSignReminderTask (class in

bptl.work_units.valid_sign.tasks), 20

54 Index

	Introduction
	Usage
	Usage
	Management commands
	show_task_registry

	Python API
	Execute tasks

	Deployment
	Dependencies
	Services
	Queues
	Celery beat
	Celery monitoring

	Recap

	Third party documentation
	ValidSign
	Configuration
	Connecting to a topic
	Integration

	Xential
	Integration
	Silent document creation
	Interactive document creation
	Failures

	Camunda support
	Management commands
	fetch_and_lock_tasks

	Python API
	Complete tasks

	Public API
	Tasks and task registry
	Work units
	API’s voor Zaakgericht Werken
	BRP
	Kadaster
	Camunda
	ValidSign
	Email
	Kownsl
	Xential
	ZAC

	Camunda tasks

	Developers
	Architecture
	BPTL Components
	Timeline

	Process engines
	Camunda architecture
	REST-full API architecture

	Work units
	Work unit interface
	Function based
	Class based

	Registering work units
	Autodiscover
	Registration
	Defining required services
	Authenticating in a work unit

	Task interface
	Best practices
	Documentation
	Variable extraction

	General information
	CSS
	JavaScript

	Coding style
	Backend coding style
	Imports
	Naming

	Frontend coding style
	HTML
	Common
	Indentation
	Data-attributes
	Elements

	Sass
	Common
	Globals
	Indentation
	Nesting
	Newlines
	Order
	Selectors
	Variables

	JavaScript
	Common
	Indentation
	Classes
	Conditionals
	Constants
	Event binding
	Functions
	Line breaks/newlines
	Variables
	Tests

	Best practices
	HTML
	CSS/SASS
	Javascript

	Testing
	Django tests
	Jenkins

	SASS build - Jenkins
	Javascript tests

	Indices and tables
	Python Module Index
	Index

